Mathématique

Bertrand Mareschal

bmaresc@ulb.ac.be

https://bertrand.mareschal.ulb.be/math-umons.html

2022/2023

Plan du cours

- 1. Introduction
 - Contenu du cours
- 2. Logique mathématique
 - Calcul propositionnel
 - Calcul des prédicats
 - Logique floue et aide à la décision
- 3. Récurrence et induction
- 4. Analyse d'algorithmes
 - Comparaison asymptotique de fonctions
 - Complexité
- 5. Mathématique de la gestion
 - Théorie des graphes
 - Optimisation

1. Introduction

- Présentations et documents disponibles sur la page web du cours.
- Optionnel: Livres de référence:
 - G. Haggard, J. Schlipf et S. Whitesides (2006): Discrete Mathematics for Computer Science, Thomson Brooks/Cole, ISBN: 9-780534-495015
 - S. Lipschutz (1983): Mathématiques pour informaticiens, série Schaum, McGraw Hill, ISBN: 2-7042-1067-5
 - R. Sedgewick et P. Flajolet (1996): Introduction à l'analyse des algorithmes, International Thomson Publishing, ISBN: 2-84180-957-9
- Evaluation:
 - Projet personnel (aide à la décision)
 - Examen écrit en deux parties : théorie (sans notes) et exercices (à livre ouvert).

Plan du cours

- 1. Introduction
 - Contenu du cours
- 2. Logique mathématique
 - Calcul propositionnel
 - Calcul des prédicats
 - Logique floue et aide à la décision
- 3. Récurrence et induction
- 4. Analyse d'algorithmes
 - Comparaison asymptotique de fonctions
 - Complexité
- 5. Mathématique de la gestion
 - Théorie des graphes
 - Optimisation

2. Logique mathématique

- Logique classique :
 - Un énoncé a 2 valeurs de vérité possibles :
 - Vrai (V) ou faux (F).
 - Calcul propositionnel.
 - Calcul des prédicats.
- Logique floue :
 - Un énoncé peut être « plus ou moins » vrai ou faux.
 - Application en aide à la décision.

Calcul propositionnel

- Enoncé:
 - 2 valeurs de vérité possibles : V (vrai) ou F faux)
 - Exemples:
 - Paris est en France.
 - · Charleroi est au nord de Bruxelles.
 - 2 + 2 = 5
 - Attention:
 - Où allez-vous ? (n'est pas un énoncé)
- Enoncé composé : sous-énoncés connectés à l'aide d'opérateurs logiques.
- **Proposition**: énoncé composé faisant intervenir des variables (p, q, r, ...)

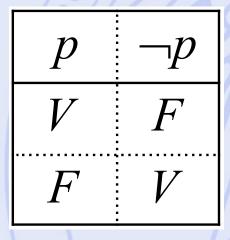
Conjonction logique - « et »

Conjonction de deux propositions p et q :

$$p \wedge q$$

• Table de vérité :

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F


Disjonction logique - « ou »

- Disjonction de deux propositions p et q :
 « ou » non exclusif
- Table de vérité :

p	q	$p \vee q$
V	V	V
V	F	V
F	V	V
F	F	F

Négation logique - « non »

- Négation d'une proposition p :
 « il est faux que... » p v q
- Table de vérité :

ULB

Table de vérité d'une proposition

• Exemple:

$$\neg(p \land \neg q)$$

p	q	$\neg q$	$p \land \neg q$	$\neg(p \land \neg q)$
V	V	F	F	V
V	F	V	V	F
F	V	F	F	V
F	F	V	F	V

2022/2023

Propositions particulières

• Tautologie:

- Proposition qui est toujours vraie (V partout dans la dernière colonne de la table de vérité).

Contradiction :

- Proposition qui est toujours fausse (F partout dans la dernière colonne de la table de vérité).

• Exemples :

- Tautologie:
- Contradiction:

$$p \lor \neg p$$
 $p \land \neg p$

Equivalence logique

- Deux propositions P et Q sont logiquement équivalentes si elles ont des tables de vérité identiques : $P \equiv Q$
- Exemple: $\neg (p \land q) \equiv \neg p \lor \neg q$

p	q	$p \wedge q$	$\neg(p \land q)$		p	q	$\neg p$	$\neg q$	$\neg p \lor \neg q$
V	V	V	F		V	V	F	F	F
V	F	F	V		V	F	F	V	V
F	V	F	V		F	V	V	F	V
F	F	F	V	•	F	F	V	V	V

Algèbre des propositions (1)

• Lois idempotentes:

$$p \lor p \equiv p$$
 $p \land p \equiv p$

Lois d'associativité :

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$
$$(p \land q) \land r \equiv p \land (q \land r)$$

• Lois de commutativité :

$$p \lor q \equiv q \lor p$$
 $p \land q \equiv q \land p$

Algèbre des propositions (2)

• Lois de distributivité:

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

Lois d'identité :

$$p \lor f \equiv p \qquad p \land t \equiv p$$
$$p \lor t \equiv t \qquad p \land f \equiv f$$

(t: tautologie, f: contradiction)

Algèbre des propositions (3)

• Lois de complémentarité :

$$p \lor \neg p \equiv t \qquad p \land \neg p \equiv f$$
$$\neg t \equiv f \qquad \neg f \equiv t$$

- Loi d'involution : $\neg \neg p \equiv p$
- Lois de de Morgan :

$$\neg(p \lor q) \equiv \neg p \land \neg q$$
$$\neg(p \land q) \equiv \neg p \lor \neg q$$

Enoncé conditionnel

- « Si p, alors q » : $p \rightarrow q$ – p implique q, p seulement si q
- Table de vérité :

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Enoncé biconditionnel

• « p si et seulement si q » : $p \leftrightarrow q$

• Table de vérité :

p	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Propriétés

• En fonction des opérateurs logiques :

$$p \rightarrow q \equiv \neg p \lor q$$

• Contraposée :

p	q	$p \rightarrow q$	$q \rightarrow p$	$\neg p \rightarrow \neg q$	$\neg q \rightarrow \neg p$
V	V	V	V	V	V
V	F	F	V	V	F
F	V	V	F	F	V
F	F	V	V	V	V

$$p \to q \equiv \neg q \to \neg p$$

- Si j'étudie, je réussis mon examen.
- Si je réussis mon examen, c'est que j'ai étudié.
- Si je ne réussis pas mon examen, c'est que je n'ai pas étudié.
- Si je n'étudie pas, je ne réussis pas mon examen.
- Si A est un triangle équilatéral, A est isocèle (V).
- Si A est un triangle isocèle, A est équilatéral (F).

Raisonnement (1)

- Relation entre un ensemble de propositions $(P_1, P_2, ..., P_n)$ appelées prémisses et une proposition Q appelée conclusion : $P_1, P_2, ..., P_n \succ Q$
- Un raisonnement est valide si *Q* est vraie dans tous les cas où les prémisses sont toutes vraies.
- Un raisonnement non valide est appelé contre-vérité.

2022/2023

Raisonnement (2)

Exemples:

- Valide (modus ponens): $p, p \rightarrow q \succ q$
- Contre-vérité : $p \rightarrow q, q \succ p$
- Syllogisme : $p \rightarrow q, q \rightarrow r \succ p \rightarrow r$
- Propriété:

$$P_1, P_2, \dots, P_n \succ Q$$

est valide ssi

$$P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n} \rightarrow Q$$

est une tautologie

Implication logique

• P implique logiquement Q si Q est vraie dans tous les cas où P est vraie : $P \Rightarrow Q$

• Exemple :

$$p \Rightarrow p \vee q$$

Propriétés

- Théorème : Les trois énoncés suivants sont équivalents :
 - 1. $P \Rightarrow Q$
 - 2. Le raisonnement $P \succ Q$ est valide
 - 3. $P \rightarrow Q$ est une tautologie
- Si $P \Rightarrow Q$ et $Q \Rightarrow P$, P et Q ont la même table de vérité et $P \equiv Q$

Formes normales

- Objectifs:
 - Simplifier l'interprétation de propositions.
 - Vérifier qu'une proposition peut être vraie, ou qu'elle est une tautologie.
- 2 formes normales:
 - Forme normale disjonctive.
 - Forme normale conjonctive.

Forme normale disjonctive

• Exemple 1:

- Les deux propositions suivantes sont logiquement équivalentes :

$$(p \to (q \lor r)) \longleftrightarrow (q \to p)$$
$$(p \land q) \lor (p \land \neg q \land r) \lor (\neg p \land \neg q)$$

- Vérification : tables de vérité identiques.
- La 2ème est sous forme normale disjonctive.

p	q	r	q∨r	$p \rightarrow q \lor r$	q→p	\leftrightarrow
V	V	V	V	V	V	V
V	V	F	V	V	V	V
V	F	V	V	V	V	V
V	F	F	F	F	V	F
F	V	V	V	V	F	F
F	V	F	V	V	F	F
F	F	V	V	V	V	V
F	F	F	F	V	V	V

p	q	r	q∨r	p → q∨r	q→p	\Leftrightarrow
V	V	V	V	V	V	V
V	V	F	V	V	V	V
V	F	V	V	V	V	V
V	F	F	F	F	V	F
F	V	V	V	V	F	F
F	V	F	V	V	F	F
F	F	V	V	V	V	V
F	F	F	F	V	V	V

Forme normale disjonctive

• Exemple 2 : (négation)

$$\neg((p \to (q \lor r)) \longleftrightarrow (q \to p))$$
$$(\neg p \land q) \lor (p \land \neg q \land \neg r)$$

Forme normale disjonctive

• Théorème :

Toute proposition est logiquement équivalente à une proposition sous forme normale disjonctive (pas nécessairement unique).

- Principe de démonstration :
 - Ecrire la table de vérité.
 - Identifier les lignes pour lesquelles la proposition est vraie.
 - Ecrire la disjonction des conjonctions de « lettres » correspondantes.

$$\neg (p \rightarrow q) \rightarrow (q \land \neg r)$$

				777 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
p	q	r	$\neg(p\rightarrow q)$	q∧¬r	\rightarrow
V	V	V	F	F	V
V	V	F	F	V	V
V	F	V	V	F	F
V	F	F	V	F	F
F	V	V	F	F	V
F	V	F	F	V	V
F	F	V	F	F	V
F	F	F	F	F	V

$$\neg (p \rightarrow q) \rightarrow (q \land \neg r)$$

p	q	r	¬(p→q)	q∧¬r	\rightarrow
V	V	V	F	F	V
V	V	F	F	V	V
V	F	V	V	F	F
V	F	F	V	F	F
F	V	V	F	F	V
F	V	F	F	V	V
F	F	V	F	F	V
F	F	F	F	F	V

$$(p \land q) \lor \neg p$$

Forme normale conjonctive

• Exemple 1:

- Les deux propositions suivantes sont logiquement équivalentes :

$$(p \to (q \lor r)) \longleftrightarrow (q \to p)$$
$$(p \lor \neg q) \land (\neg p \lor q \lor r)$$

- Vérification : tables de vérité identiques.
- La 2ème est sous forme normale conjonctive.

Forme normale conjonctive

• Théorème :

Toute proposition est logiquement équivalente à une proposition sous forme normale conjonctive (pas nécessairement unique).

- Principe de démonstration :
 - Transformer la négation de la proposition sous forme normale disjonctive.
 - Utiliser la loi de De Morgan pour se ramener à une forme normale conjonctive pour la proposition.

$$\neg (p \rightarrow q) \rightarrow (q \land \neg r)$$

				777 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
p	q	r	$\neg(p\rightarrow q)$	q∧¬r	\rightarrow
V	V	V	F	F	V
V	V	F	F	V	V
V	F	V	V	F	F
V	F	F	V	F	F
F	V	V	F	F	V
F	V	F	F	V	V
F	F	V	F	F	V
F	F	F	F	F	V

$$\neg(\neg(p\rightarrow q)\rightarrow(q\land\neg r))$$

p	q	r	¬(p→q)	q∧¬r	$\neg (\rightarrow)$
V	V	V	F	F	F
V	V	F	F	V	F
V	F	V	V	F	V
V	F	F	V	F	V
F	V	V	F	F	F
F	V	F	F	V	F
F	F	V	F	F	F
F	F	F	F	F	F

$$\neg(\neg(p\rightarrow q)\rightarrow(q\land\neg r))$$

p	q	r	¬(p→q)	q∧¬r	$\neg (\rightarrow)$
V	V	V	F	F	F
V	V	F	F	V	F
V	F	V	V	F	V
V	F	F	V	F	V
F	V	V	F	F	F
F	V	F	F	V	F
F	F	V	F	F	F
F	F	F	F	F	F

$$(p \land \neg q \land r) \lor (p \land \neg q \land \neg r)$$

Exemple 3

$$\neg(\neg(p \to q) \to (q \land \neg r))$$

$$\equiv$$

$$(p \land \neg q \land r) \lor (p \land \neg q \land \neg r)$$

$$\neg(p \rightarrow q) \rightarrow (q \land \neg r)$$

$$\equiv$$

$$(\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r)$$

Calcul des prédicats

- **Prédicat**: Proposition qui porte sur des éléments variables d'un ensemble fixé.
- Exemples :
 - -n est pair.
 - Le triangle *T* est isocèle.
 - La relation R sur N est réflexive.

Prédicat

- Définition : Application P qui associe une proposition P(x) à chaque élément x d'un ensemble E (univers du prédicat).
- Poids d'un prédicat : nombre de variables.
- Exemples:

$$P(n) = \{n \in \mathbb{Z} \text{ est pair}\}$$
 (poids 1)

$$P(a,b) = \{a,b \in \bullet \text{ sont tels que } a+b=5\}$$
 (poids 2)

$$Q(b) = P(3,b) = \{b \in \bullet \text{ est tel que } 3+b=5\}$$
 (poids 1)

$$R = Q(9) = \{3+9=5\}$$
 (poids 0)

$$P(a) = \{a \in \sim \text{ est positif}\}$$
 (poids 1)

$$Q(a,b) = \{a \in \sim b \in B \text{ sont tels que } a \text{ est positif}\}$$
 (poids 2)

Combinaisons de prédicats

Exemples:

```
P(n) = \{n \in \bullet \text{ est pair}\}
```

 $Q(n) = \{n \in \bullet \text{ est le carré d'un autre entier naturel}\}$

$$\neg P(n) = \{ n \in \bullet \text{ n'est pas pair} \}$$

 $P \wedge Q(n) = \{n \in \bullet \text{ est pair et est le carré d'un autre entier naturel}\}$

 $P \lor Q(n) = \{n \in \bullet \text{ est pair ou est le carr\'e d'un autre entier naturel}\}$

Combinaisons de prédicats

• Exemples :

```
P(n) = \{n \in \bullet \text{ est pair}\}\
Q(m) = \{m \in \bullet \text{ est divisible par 3}\}\
P \land Q(n) = \{n \in \bullet \text{ est pair et est divisible par 3}\}\
```

$$R(m,n) = \{n \in \bullet \text{ est pair}\}\$$

 $S(m,n) = \{m \in \bullet \text{ est divisible par 3}\}\$
 $R \land S(m,n) = \{n \in \bullet \text{ est pair et } m \in \bullet \text{ est divisible par 3}\}\$

- Quantificateur universel:
 - Quel que soit x la proposition P(x) est vraie :

$$\forall x : P(x)$$

- Quantificateur existentiel:
 - Il existe x tel que la proposition P(x) est vraie
 :

 $\exists x : P(x)$

• Exemples :

$$P(n) = \{n \in \bullet \text{ est pair}\}$$

$$\forall n : P(n) = \{ \text{tout entier naturel est pair} \}$$
 (faux)

$$\exists n : P(n) = \{\text{il existe un entier naturel est pair}\}$$
 (vrai)

• Théorème 1 : Soit P(a,b) un prédicat de poids 2. Alors :

```
1° \forall a \forall b : P(a,b) \equiv \forall b \forall a : P(a,b)
```

- $2^{\circ} \exists a \exists b : P(a,b) \equiv \exists b \exists a : P(a,b)$
- $3^{\circ} \exists b : \forall a : P(a,b) \Rightarrow \forall a : \exists b : P(a,b)$
- $4^{\circ} \exists a : \forall b : P(a,b) \Rightarrow \forall b : \exists a : P(a,b)$

• Exemple:

 $P(a,b) = \{a,b \in \mathbb{Z} \text{ sont tels que } a+b=5\}$

$\forall a \forall b : P(a,b)$	$\int \text{tous les } a, b \in \mathbb{Z} \text{ sont } $	F
	$\begin{cases} \text{tels que } a + b = 5 \end{cases}$	
$\exists a \exists b : P(a,b)$		V
$\exists b: \forall a: P(a,b)$		F
$\forall a: \exists b: P(a,b)$		V
$\exists a : \forall b : P(a,b)$		\overline{F}
$\forall a: \exists b: P(a,b)$		\overline{V}

• Théorème 2:

1°
$$\neg(\forall x : P(x)) \equiv \exists x : (\neg P(x))$$

2° $\neg(\exists x : P(x)) \equiv \forall x : (\neg P(x))$

• Exemples :

$$\neg(\forall n: n \text{ est divisible par } 3)$$

4

 $\exists n : n \text{ n'est pas divisible par } 3$

$$\neg (\forall x : \exists y : P(x,y)) \equiv \exists x : \forall y : \neg P(x,y)$$

• Théorème 3 :

1°
$$\forall x : (P(x) \land Q(x)) \equiv (\forall x : P(x)) \land (\forall x : Q(x))$$

2° $\exists x : (P(x) \land Q(x)) \Rightarrow (\exists x : P(x)) \land (\exists x : Q(x))$
3° $\exists x : (P(x) \lor Q(x)) \equiv (\exists x : P(x)) \lor (\exists x : Q(x))$
4° $\forall x : (P(x) \lor Q(x)) \Leftarrow (\forall x : P(x)) \lor (\forall x : Q(x))$

• Exemple:

$$P(x) = \{ x \in \bullet \text{ est pair} \}$$

$$Q(x) = \{x \in \bullet \text{ est impair}\}$$

$\forall x : (P(x) \land Q(x))$	F
$(\forall x : P(x)) \land (\forall x : Q(x))$	F
$\exists x : (P(x) \land Q(x))$	F
$(\exists x : P(x)) \land (\exists x : Q(x))$	V
$\exists x : (P(x) \vee Q(x))$	V
$(\exists x : P(x)) \lor (\exists x : Q(x))$	V
$(\forall x : P(x)) \lor (\forall x : Q(x))$	\overline{F}
$\forall x : (P(x) \lor Q(x))$	V

Logique floue

- Un énoncé a un degré de vérité compris entre 0 et 1.
- Exemple : « il fait chaud »
 - 0 : faux,
 - 0,2 : plutôt faux,
 - 0,5 : peut-être bien...
 - 0,8 : plutôt vrai,
 - 1 : vrai.
- Redéfinition des opérateurs logiques.

Application en aide à la décision

- Problèmes de décision.
- Modélisation des préférences.
- Structures de préférences.
- La méthodologie PROMETHEE.

Quelques Problèmes de Décision et d'Evaluation

- Choisir le site d'implantation d'une nouvelle usine, d'un magasin, ...
- Engager du personnel, GRH.
- Acheter du matériel.
- Evaluer la qualité des fournisseurs.
- Evaluer des projets.
- Choisir une stratégie d'investissement.

- Actions:
 - décisions possibles,
 - items à évaluer.
- Critères:
 - quantitatifs,
 - qualitatifs.

Action 1	
Action 1	
Action 2	
Action 3	
Action 4	
Action 5	
2022/2023	

	Crit. 2 (unité)		•••
Action 1			
Action 2			
Action 3			
Action 4			
Action 5			
2022/2023			

	Crit. 1	Crit. 2 (cote)	Crit. 3 (appréc.)	Crit. 4 (0/N)	•••
Action 1	18	135	В	Oui	•••
Action 2	9	147	M	Oui	•••
Action 3	15	129	TB	Non	•••
Action 4	12	146	TM	?	•••
Action 5	7	121	В	Oui	•••
•••	•••	•••	•••	•••	•••

2022/2023

Localisation d'une Usine

	Investissement (BEF)	Coûts (BEF)	Environn. (estimation)	•••
Site 1	18	135	В	•••
Site 2	9	147	M	•••
Site 3	15	129	ТВ	•••
Site 4	12	146	TM	•••
Site 5	7	121	В	•••
•••	•••	•••	•••	•••

2022/2023

Possibilité d'Achats

		1/2		
	Prix	Fiabilité	Maintenance	
	(BEF)	(jours)	(estimation)	•••
Produit A	18	135	В	•••
Produit B	9	147	M	•••
Produit C	15	129	TB	•••
Produit D	12	146	TM	•••
Produit E	7	121	В	•••
•••	•••	•••	•••	•••

2022/2023

Un Exemple

Achat d'une automobile

Objectifs:

- Economie à l'achat (prix),
- Economie à l'usage (consommation),
- Performances (puissance),
- Confort,
- Habitabilité.

Marque	Prix	Puissance	Consomm.	Habitabilité	Confort
Moyenne A	360000	75	8,0	3	3
Sport	390000	110	9,0	1	2
Moyenne B	355000	85	7,0	4	3
Luxe 1	480000	90	8,5	4	5
Economic	250000	50	7,5	2	1
Luxe 2	450000	85	9,0	5	4

• Quel est le meilleur achat?

Marque	Prix	Puissance	Consomm.	Habitabilité	Confort
Moyenne A	360000	75	8,0	3	3
Sport	390000	110	9,0	1	2
Moyenne B	355000	85	7,0	4	3
Luxe 1	480000	90	8,5	4	5
Economic	250000	50	7,5	2	1
Luxe 2	450000	85	9,0	5	4

• Quel est le meilleur achat?

Marque	Prix	Puissance	Consomm.	Habitabilité	Confort
Moyenne A	360000	75	8,0	3	3
Sport	390000	110	9,0	1	2
Moyenne B	355000	85	7,0	4	3
Luxe 1	480000	90	8,5	4	5
Economic	250000	50	7,5	2	1
Luxe 2	450000	85	9,0	5	4

- Quel est le meilleur achat ?
- Quel est le meilleur compromis ?

Marque	Prix	Puissance	Consomm.	Habitabilité	Confort
Moyenne A	360000	75	8,0	3	3
Sport	390000	110	9,0	1	2
Moyenne B	355000	85	7,0	4	3
Luxe 1	480000	90	8,5	4	5
Economic	250000	50	7,5	2	1
Luxe 2	450000	85	9,0	5	4

- Quel est le meilleur achat ?
- Quel est le meilleur compromis?
- Quelles sont les priorités de l'acheteur ?

Modélisation des préférences

• Problème :

Comment comparer deux actions a et b entre elles ?

• Premier modèle : 3 résultats

possibles:

2. Indifférence : alb

3. Incomparabilité : aRb

Structure de préférences

• Propriétés (logiques):

aPb ⇒ non bPa	P est asymétrique
ala	I est réflexive
$alb \Rightarrow bla$	I est symétrique
Non aRa	R est irréflexive
$aRb \Rightarrow bRa$	R est symétrique

• Ces trois relations de préférence forment une structure de préférence (s.p.), si pour tous a,b de A on a toujours l'une des quatre situations suivantes :

Structure de préférence traditionnelle (unicritère)

• Optimisation d'une fonction g définie sur A

$$\forall a, b \in A : \begin{cases} aPb & \Leftrightarrow & g(a) > g(b) \\ aIb & \Leftrightarrow & g(a) = g(b) \end{cases}$$

• Conséquences:

R est vide
P est transitive
I est transitive

• Préordre total.

Notion de seuil d'indifférence

- Problème : Intransitivité de l'indifférence.
 - Cf. Paradoxe de la tasse de café (Luce, 1956)
- Introduction d'un seuil d'indifférence :

$$\forall a, b \in A : \begin{cases} aPb & \Leftrightarrow & g(a) > g(b) + q \\ aIb & \Leftrightarrow & g(a) - g(b) \leq q \end{cases}$$

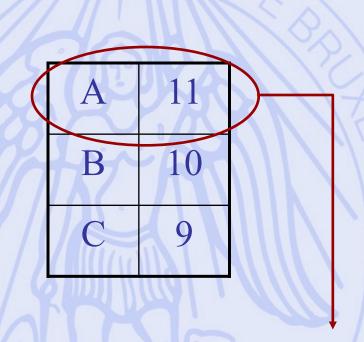
• Quasi-ordre: P est transitive, mais pas l.

Autres structures de préférences

- Seuil d'indifférence variable
 - ⇒ Notion d'ordre d'intervalle.
- Seuil de préférence + seuil d'indifférence
 - ⇒ Notion de pseudo-ordre.
- Modèles incluant l'incomparabilité
 - ⇒ Notion d'ordre partiel.
- Structures valuées de préférences.

Théorie du choix social

- Problème :
 - Un groupe de personnes doivent choisir un candidat parmi plusieurs (élection).
 - Chaque personne (électeur) classe les candidats par ordre de préférence.
 - Quel candidat doit être élu?
- Quelle est la « meilleure » procédure de vote ?
- Analogie avec les modèles multicritères :
 - Candidats ↔ actions,
 - Electeurs ↔ critères.


5 procédures... ... parmi d'autres...

- 1. Majorité relative.
- 2. Condorcet.
- 3. Scrutin à 2 tours (présidentielle).
- 4. Borda.
- 5. Eliminations successives.

Procédure 1 : Majorité relative

3 candidats: Albert, Bruno, Claire 30 votants:

11	10	9
votants	votants	votants
A	В	C
В	C	\leq B/
С	A	A

Albert est élu

Procédure 1: Majorité relative

3 candidats: Albert, Bruno, Claire 30 votants:

11	10	9
votants	votants	votants
A	В	C
В	C	B
С	A	A

A 11
B 10
C 9

Problème : B et C préférés à A par une majorité de votants !

Albert est élu

Marie Jean Antoine Nicolas de Caritat Marquis de Condorcet 1743 - 1794

Procédure 2 : Condorcet

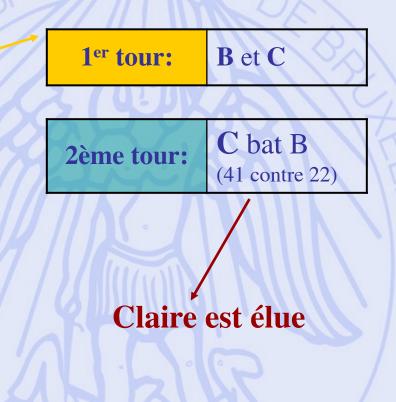
3 candidats: Albert, Bruno, Claire 30 votants:

11	10	9	
votants	votants	votants	
A	В	C	
В	С	$\frac{1}{2}$ B/	
C	A	A	

B meilleur que A	19 votes
B meilleur que C	21 votes
C meilleur que A	19 votes

Bruno est élu

3 candidats: Albert, Bruno, Claire 9 votants:


4	3	2
votants	votants	votants
A	В	C
В	С	$\leq A//$
С	A	В

A meilleur que B	6 votes
B meilleur que C	7 votes
C meilleur que A	5 votes

Procédure 3 : Scrutin à 2 tours (élection présidentielle française)

4 candidats: Albert, Bruno, Claire, Diane 63 votants:

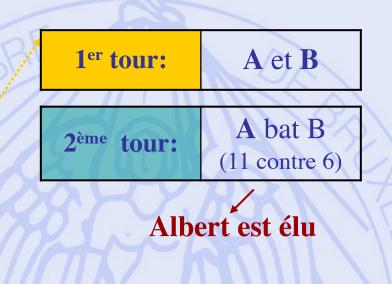
22	21	20
votants	votants	votants
В	C	D
A	A	A
С	D	C
D	В	В

Procédure 3 : Scrutin à 2 tours (élection présidentielle française)

4 candidats: Albert, Bruno, Claire, Diane 63 votants:

22	21	20
votants	votants	votants
В	C	D
A	A	A
C	D	C
D	В	В

Claire est élue !!!


...alors que

A meilleur que C	42 votes
A meilleur que B	41 votes
A meilleur que D	43 votes

Procédure 3 : scrutin à 2 tours (élection présidentielle française)

3 candidats: Albert, Bruno, Claire 17 votants:

5	6	4	2
votants	votants	votants	votants
С	A	B	B
A	В	C	A
В	С	A	C

Procédure 3 : scrutin à 2 tours (élection présidentielle française)

3 candidats: Albert, Bruno, Claire 17 votants:

5	6	4	2
votants	votants	votants	votants
C	A	В	A
A	В	C	BA
В	С	A	C

Albert était élu

1er tour:

A et C C bat A 2ème tour: (9 contre 8)

Claire est élue!

Problème : non-monotonicité!

Jean Charles de Borda 1733 - 1799

Procédure 4: Bordan 1

3 candidats: Albert, Bruno, Claire 81 votants:

 $11 \times 2 + 11 \times 1$

30	29	10	10	(1)	1/
votants	votants	votants	votants	votant	votant
A	C	C	В	A	В
C	A	В	A	В	C
В	В	A	C	C	A

5	Points	Score	
	2	A 101	17
	1	В 33	
	0	C (109	

Claire est élue!

 $39 \times 2 + 31 \times 1$

Procédure 4: Borda

3 candidats: Albert, Bruno, Claire 81 votants:

30	29	10	10	1	1
votants	votants	votants	votants	votant	votant
A	C	C	В	A	В
C	A	В	Ä	В	C
В	В	A	C	C	A

Points	Sco	Scores			
2	A	101			
1	В	33			
0	C	109			

A meilleur que C: 41 sur 81

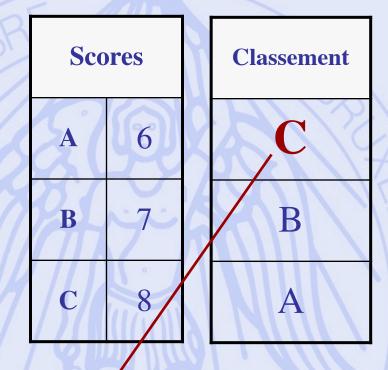
Procédure 4: Borda

4 candidats: Albert, Bruno, Claire, Diane

7 votants:

3 votants	2 votants	2 votants	Points
C	В	A	3
В	A	D	2
A	D	С	1
D	С	В	0

Sco	ores		Classement
A	13		A
В	12		В
C	11		C
D	6/	0	D



Procédure 4: Borda

4 candidats: Albert, Bruno, Claire, Diane

7 votants:

3 votants	2 votants	2 votants	Points
C	В	A	2
В	A	C	<u> </u>
A	C	В	0

Claire est élue

Borda (manipulation)

3 candidats: Albert, Bruno, Claire

34 votants: Les partisans de Bruno suscitent la candidature du candidat x (« candidat bidon »)

 Scores
 Classement

 A
 46

 B
 36

 C
 20

C

Albert est élu

Borda (manipulation)

4 candidats: Albert, Bruno, Claire, x

34 votants:

12	12	10	Points
votants	votants	votants	15
A	В	C	3
В	X	A	2
С	A	В	1
X	C	X	0

Scores Classement 68 A 70 B 42 X

Bruno est élu!

Borda (manipulation)

4 candidats: Albert, Bruno, Claire, x

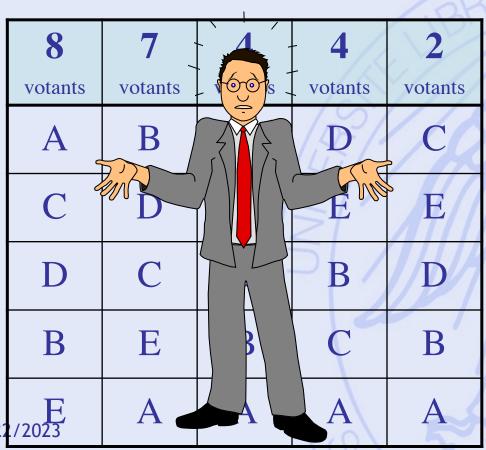
34 votants:

12	12	10	Points
votants	votants	votants	1001
A	В	C	3
X	X	X	2
В	A	A	1
C	C	В	0

2	Scores			Classement
	A	58		X
	В	48		A
1	C	30/		В
	X	68		C

2022 Le candidat « bidon » est élu!

Procédure 5 : Eliminations successives


- Procédure par tours.
- Principe:

 Eliminer à chaque tour le moins bon candidat, jusqu'à ce qu'il n'en reste plus qu'un.

En conclusion?

5 candidats: Albert, Bruno, Claire, Diane, Eric

25 votants:

Majorité relative:

Albert est élu

Procédure française:

Bruno est élu

Procédure de Condorcet:

→ Claire est élue

Procédure de Borda:

→ **Diane** est élue

Eliminations successives:

→ Eric est élu

Kenneth Arrow (Nobel d'économie, 1972)

• Théorème d'impossibilité (1952) :

Avec au moins 2 votants et 3 candidats, il est **impossible** de construire une procédure de vote satisfaisant simultanément les 5 propriétés suivantes :

- Non-dictature.
- Universalité.
- Indépendance vis-à-vis des tiers.
- Monotonicité.
- Non-imposition.

Méthodes de Surclassement

- Principe de majorité (Cf théorie du choix social)
- Comparaisons par paires des actions.

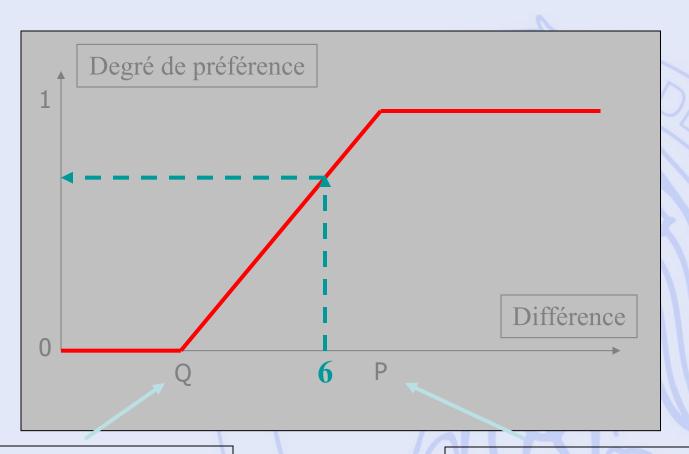
Méthodes d'Aide à la Décision

• Information supplémentaire :

Perception des échelles Pondération des critères

• Procédure d'analyse:

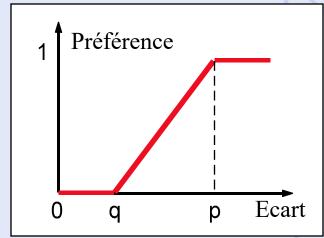
Approche prescriptive : PROMETHEE


Approche descriptive: GAIA

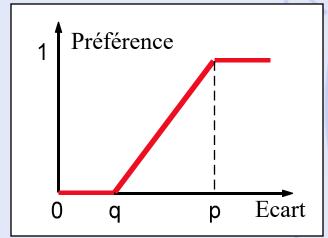
Comparaison de 2 Actions

	Crit. 1	Crit. 2	Crit. 3	Crit. 4		
	(/20)	(cote)	(appréc.)	(O/N)	•••	
Action 1	18	135	В	Oui	•••	<
Action 2	9	147	Différe	ence = 0	5	
Action 3	15	129	ТВ	Non	•••	
Action 4	12	146	TM	?	•••	
Action 5	7	121	В	Oui	•••	
•••	•••	•••	•••	•••	•••	

Fonctions de Préférence

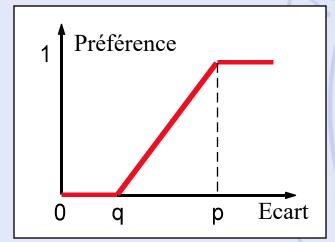

Seuil d'indifférence

Linéaire


Seuil de préférence

	Economic		Luxe 1	
<u>-230000</u>	250000	Prix	480000	
	50	Puissance	90	<u>+40</u>
<u>-1,0</u>	7,5	Consomm.	8,5	
	2	Habitabilité	4	<u>+2</u>
	1	Confort	5	<u>+4</u>

		Economic		Luxe 1		
1,0	<u>-230000</u>	250000	Prix	480000		
		50	Puissance	90	<u>+40</u>	1,0
0,5	<u>-1,0</u>	7,5	Consomm.	8,5		
		2	Habitabilité	4	<u>+2</u>	0,5
		1	Confort	5	<u>+4</u>	1,0

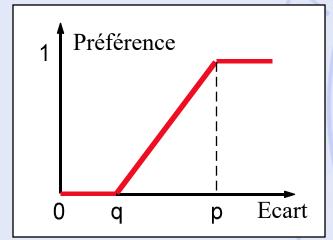

Pré	ef (Ec	o.,Lux.)	Economic		Luxe 1	Préf (L	u <mark>x.,E</mark>	co.)
	1,0	-230000	250000	Prix	480000		9,0	
	0,0		50	Puissance	90	<u>+40</u>	1,0	
	0,5	<u>-1,0</u>	7,5	Consomm.	8,5		0,0	
	0,0		2	Habitabilité	4	<u>+2</u>	0,5	5/
	0,0		1	Confort	5	<u>+4</u>	1,0	4
				5/1/	OC H	Y MY		14

Préf (Eco.,Lux.)

Préf (Lux., Eco.)

			Economic		Luxe 1			Poids
	1,0	<u>-230000</u>	250000	Prix	480000		0,0	1
	0,0		50	Puissance	90	<u>+40</u>	1,0	1
1	0,5	<u>-1,0</u>	7,5	Consomm.	8,5		0,0	1
V	0,0		2	Habitabilité	4	<u>+2</u>	0,5	1
	0,0		1	Confort	5	<u>+4</u>	1,0	1
_			14					1111

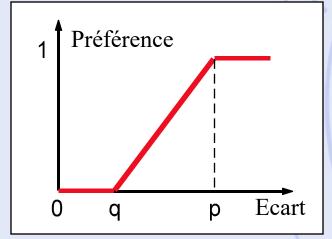
- \square Préf (Eco.,Lux.) = 0,3
 - = (1+0+0.5+0+0)/5
- \square Préf (Lux., Eco.) = 0,5

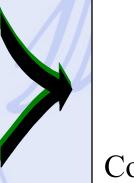

$$= (0+1+0+0.5+1)/5$$

Préf (Eco.,Lux.)

Préf (Lux., Eco.)

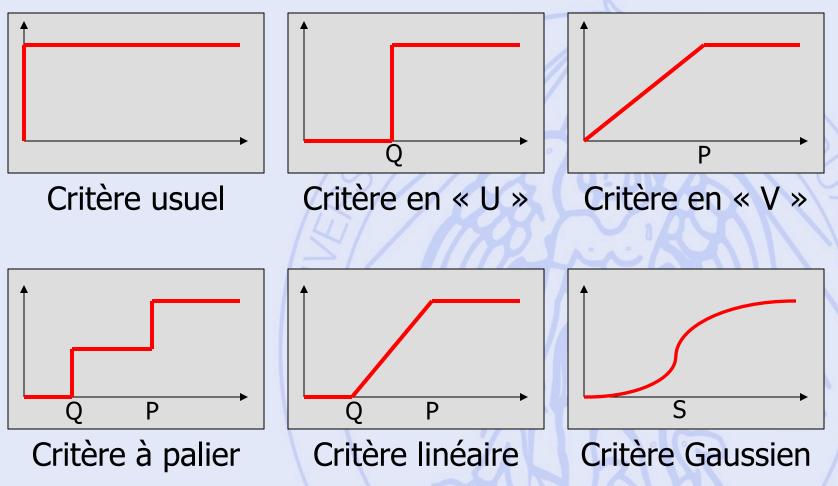
			Economic		Luxe 1			Poids
	1,0	<u>-230000</u>	250000	Prix	480000		0,0	2
	0,0		50	Puissance	90	<u>+40</u>	1,0	1
	0,5	<u>-1,0</u>	7,5	Consomm.	8,5		0,0	2
V	0,0		2	Habitabilité	4	<u>+2</u>	0,5	1
	0,0		1	Confort	5	<u>+4</u>	1,0	1
								1111





- □ Préf (Eco.,Lux.) = 0,43
 - $= (2 \times 1 + 0 + 2 \times 0.5 + 0 + 0) / 7$
- □ Préf (Lux., Eco.) = 0,36

$$= (0+1+0+0.5+1)/7$$


Pré	f (Ec	o.,Lux.)	Economic		Luxe 1	Préf (I	ux.,E	co.)
	1,0	-230000	250000	Prix	480000		0,0	
	0,0		50	Puissance	90	<u>+40</u>	1,0	
	0,5	<u>-1,0</u>	7,5	Consomm.	8,5		0,0	
	0,0		2	Habitabilité	4	<u>+2</u>	0,5	5/
	0,0		1	Confort	5	<u>+4</u>	1,0	4
				5/1/	OCI H	XXX		14

Fonctions de Préférence

Comparaisons par Paires

- Pour chaque critère g_j :
 - Fonction de préférence P_i
 - Poids w_j
- Degré de préférence multicritère de a sur b :

$$\pi(a,b) = \sum_{j=1}^{k} w_j P_j(a,b)$$

Matrice des $\pi(a,b)$

$\pi(a,b)$	Moy.A	Sport	Moy.B	Lux.1	Econ.	Lux.2	$\phi^{\scriptscriptstyle +}(a)$
Moy.A	0,00			(ARE			
Sport		0,00					
Moy.B			0,00				
Lux.1				0,00	0,50		1////
Econ.				0,30	0,00		
Lux.2						0,00	
$\phi^{-}(a)$							
$\phi(a)$		\	\	- 1/4			

Matrice des $\pi(a,b)$

$\pi(a,b)$	Moy.A	Sport	Moy.B	Lux.1	Econ.	Lux.2	$\phi^{\scriptscriptstyle +}(a)$
Moy.A	0,00	0,34	0,00	0,21	0,26	0,22	
Sport	0,20	0,00	0,16	0,24	0,30	0,24	
Moy.B	0,15	0,55	0,00	0,32	0,45	0,33	
Lux.1	0,18	0,45	0,10	0,00	0,50	0,15	1///
Econ.	0,20	0,34	0,14	0,30	0,00	0,35	
Lux.2	0,24	0,30	0,10	0,04	0,60	0,00	
$\phi^{-}(a)$				4///			
$\phi(a)$			\				

Calcul de $\phi^+(a)$

$\pi(a,b)$	Moy.A	Sport	Moy.B	Lux.1	Econ.	Lux.2	$\phi^{\scriptscriptstyle +}(a)$
Moy.A	0,00	0,34	0,00	0,21	0,26	0,22	0,21
Sport	0,20	0,00	0,16	0,24	0,30	0,24	0,23
Moy.B	0,15	0,55	0,00	0,32	0,45	0,33	0,36
Lux.1	0,18	0,45	0,10	0,00	0,50	0,15	0,28
Econ.	0,20	0,34	0,14	0,30	0,00	0,35	0,27
Lux.2	0,24	0,30	0,10	0,04	0,60	0,00	0,26
$\phi^{-}(a)$				4//			
$\phi(a)$			\	- 1/4			

Calcul de $\phi^+(a)$

$\pi(a,b)$	Moy.A	Sport	Moy.B	Lux.1	Econ.	Lux.2	$\phi^{\scriptscriptstyle +}(a)$
Moy.A	0,00	0,34	0,00	0,21	0,26	0,22	0,21
Sport	0,20	0,00	0,16	0,24	0,30	0,24	0,23
Moy.B	0,15	0,55	0,00	0,32	0,45	0,33	0,36
Lux.1	0,18	0,45	0,10	0,00	0,50	0,15	0,28
Econ.	0,20	0,34	0,14	0,30	0,00	0,35	0,27
Lux.2	0,24	0,30	0,10	0,04	0,60	0,00	0,26
$\phi^{-}(a)$				4///			
$\phi(a)$			\	- 1/4			

Calcul de $\phi^-(a)$

$\pi(a,b)$	Moy.A	Sport	Moy.B	Lux.1	Econ.	Lux.2	$\phi^{\scriptscriptstyle +}(a)$
Moy.A	0,00	0,34	0,00	0,21	0,26	0,22	0,21
Sport	0,20	0,00	0,16	0,24	0,30	0,24	0,23
Moy.B	0,15	0,55	0,00	0,32	0,45	0,33	0,36
Lux.1	0,18	0,45	0,10	0,00	0,50	0,15	0,28
Econ.	0,20	0,34	0,14	0,30	0,00	0,35	0,27
Lux.2	0,24	0,30	0,10	0,04	0,60	0,00	0,26
$\phi^{-}(a)$	0,19	0,40	0,10	0,22	0,42	0,26	
$\phi(a)$		<u>\</u>					

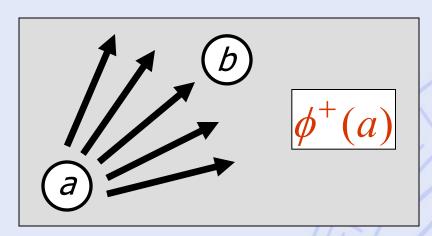
Calcul de $\phi^-(a)$

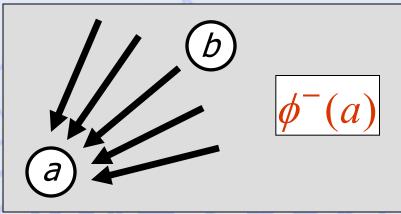
$\pi(a,b)$	Moy.A	Sport	Moy.B	Lux.1	Econ.	Lux.2	$\phi^{\scriptscriptstyle +}(a)$
Moy.A	0,00	0,34	0,00	0,21	0,26	0,22	0,21
Sport	0,20	0,00	0,16	0,24	0,30	0,24	0,23
Moy.B	0,15	0,55	0,00	0,32	0,45	0,33	0,36
Lux.1	0,18	0,45	0,10	0,00	0,50	0,15	0,28
Econ.	0,20	0,34	0,14	0,30	0,00	0,35	0,27
Lux.2	0,24	0,30	0,10	0,04	0,60	0,00	0,26
$\phi^{-}(a)$	0,19	0,40	0,10	0,22	0,42	0,26	
$\phi(a)$							

Calcul de $\phi(a)$

$\pi(a,b)$	Moy.A	Sport	Moy.B	Lux.1	Econ.	Lux.2	$\phi^{\scriptscriptstyle +}(a)$
Moy.A	0,00	0,34	0,00	0,21	0,26	0,22	0,21
Sport	0,20	0,00	0,16	0,24	0,30	0,24	0,23
Moy.B	0,15	0,55	0,00	0,32	0,45	0,33	0,36
Lux.1	0,18	0,45	0,10	0,00	0,50	0,15	0,28
Econ.	0,20	0,34	0,14	0,30	0,00	0,35	0,27
Lux.2	0,24	0,30	0,10	0,04	0,60	0,00	0,26
$\phi^{-}(a)$	0,19	0,40	0,10	0,22	0,42	0,26	
$\phi(a)$	0,02	-0,17	0,26	0,06	-0,15	0,00	

Calcul de $\phi(a)$


$\pi(a,b)$	Moy.A	Sport	Moy.B	Lux.1	Econ.	Lux.2	$\phi^{\scriptscriptstyle +}(a)$
Moy.A	0,00	0,34	0,00	0,21	0,26	0,22	0,21
Sport	0,20	0,00	0,16	0,24	0,30	0,24	0,23
Moy.B	0,15	0,55	0,00	0,32	0,45	0,33	0,36
Lux.1	0,18	0,45	0,10	0,00	0,50	0,15	0,28
Econ.	0,20	0,34	0,14	0,30	0,00	0,35	0,27
Lux.2	0,24	0,30	0,10	0,04	0,60	0,00	0,26
$\phi^{-}(a)$	0,19	0,40	0,10	0,22	0,42	0,26	
$\phi(a)$	0,02	-0,17	0,26	0,06	-0,15	0,00	

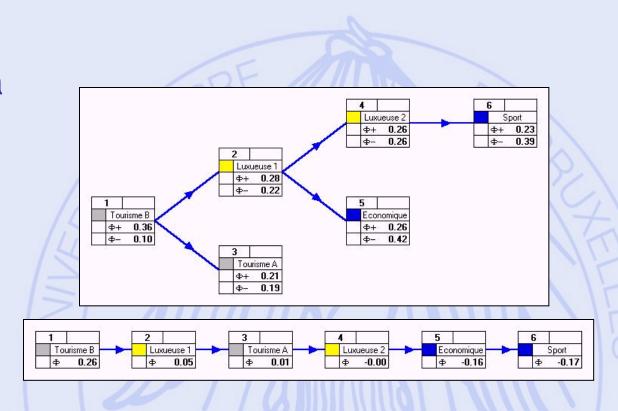

ULB

Calcul des flux de préférence

$\pi(a,b)$	Moy.A	Sport	Moy.B	Lux.1	Econ.	Lux.2	$\phi^{\scriptscriptstyle +}(a)$
Moy.A	0,00	0,34	0,00	0,21	0,26	0,22	0,21
Sport	0,20	0,00	0,16	0,24	0,30	0,24	0,23
Moy.B	0,15	0,55	0,00	0,32	0,45	0,33	0,36
Lux.1	0,18	0,45	0,10	0,00	0,50	0,15	0,28
Econ.	0,20	0,34	0,14	0,30	0,00	0,35	0,27
Lux.2	0,24	0,30	0,10	0,04	0,60	0,00	0,26
$\phi^{-}(a)$	0,19	0,40	0,10	0,22	0,42	0,26	
$\phi(a)$	0,02	-0,17	0,26	0,06	-0,15	0,00	

Flux de Préférence

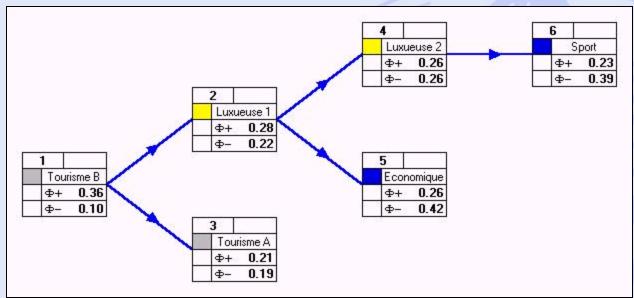
- Flux sortant: (puissance)
- Flux entrant : (faiblesse)
- Flux net:


$$\phi^+(a) = \frac{1}{n-1} \sum_{b \in A} \pi(a,b)$$

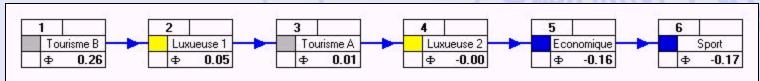
$$\phi^{-}(a) = \frac{1}{n-1} \sum_{b \in A} \pi(b,a)$$

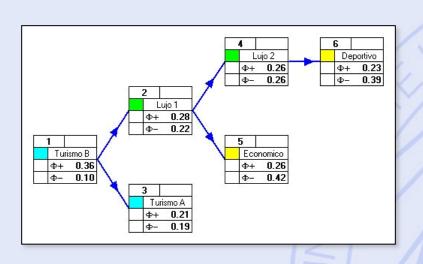
$$\phi(a) = \phi^+(a) - \phi^-(a)$$

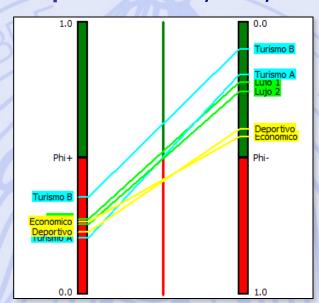
PROMETHEE

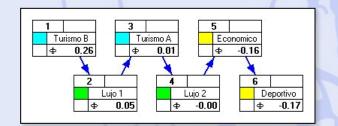

- Classer les décisions de la meilleure à la moins bonne
- Mettre en évidence les meilleurs compromis

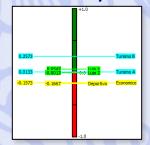
PROMETHEE

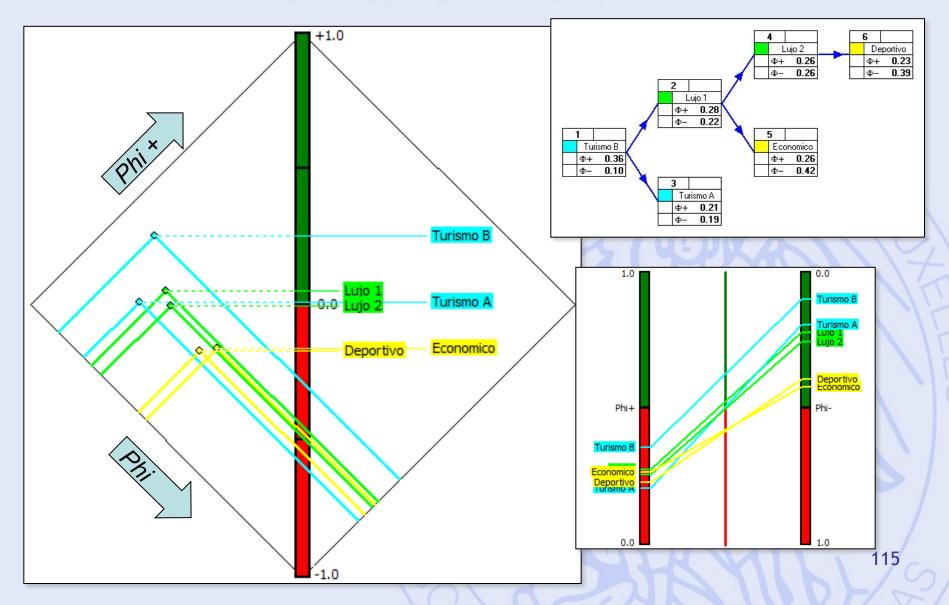

PROMETHEE I: classement partiel


PROMETHEE II: classement complet

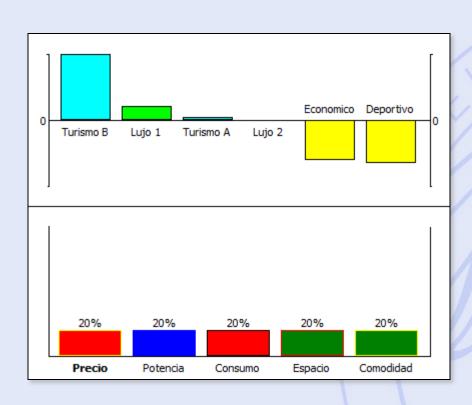


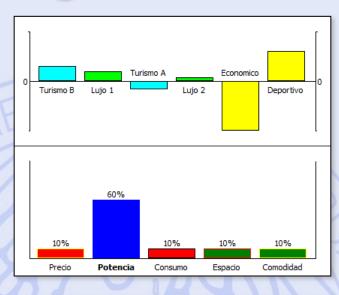

PROMETHEE I & II

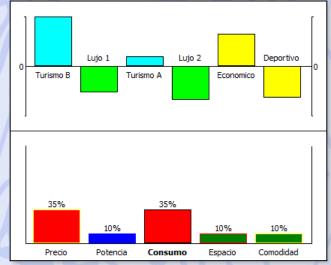

• PROMETHEE I : classement partiel - ϕ^+, ϕ^-



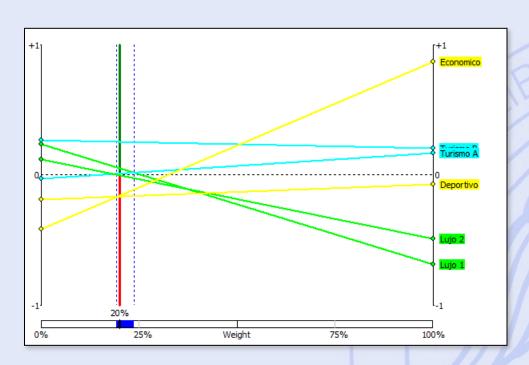
• PROMETHEE II : classement complet - ϕ

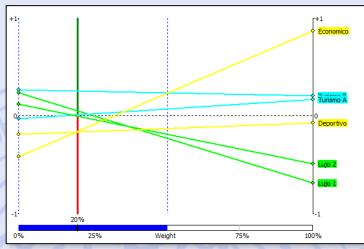

Diamant PROMETHEE

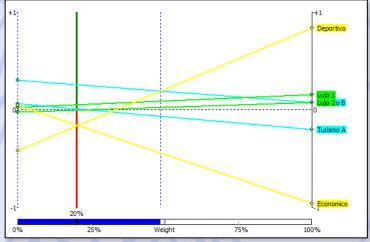


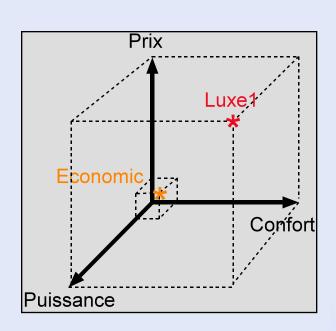

Analyse de Sensibilité avec PROMETHEE

- Poids des critères
 ← classement
 PROMETHEE.
- Analyse de sensibilité interactive :
 « Walking Weights ».
- Robustesse par rapport aux poids?
 - Intervalles de stabilité.
 - Intervalles de stabilité visuels.

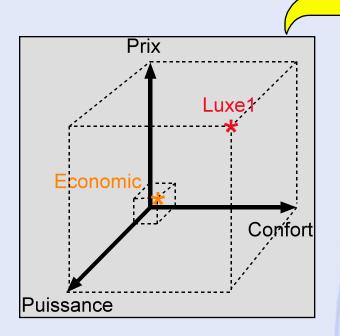

Walking Weights



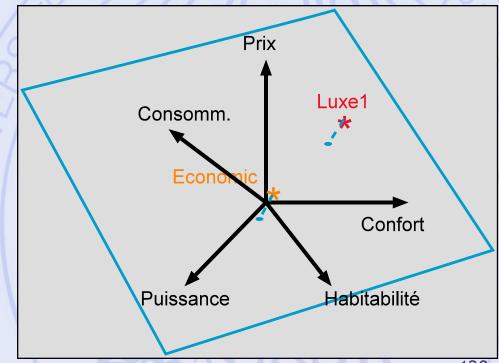

Visual Stability Intervals

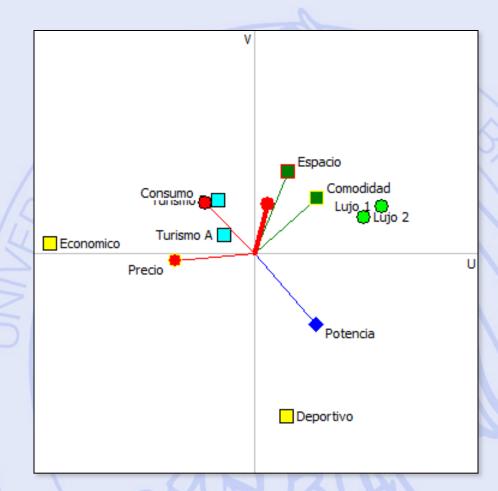

VSI pour « Prix » (niveau 6): [19.20%, 23.70%]

VSI pour « Prix » (niv. 1): [0.00%, 50.68%]



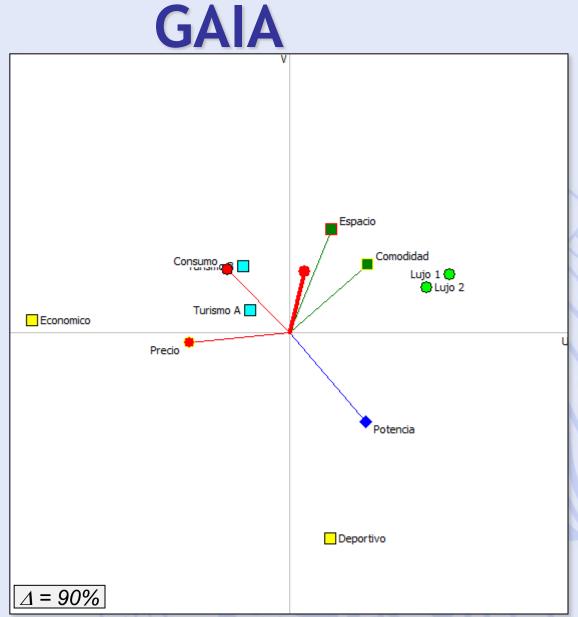
VSI pour « Puissance » (niv. 1): [0.00% , 48.65% 1 118


- Représentation graphique.
- 5 dimensions!



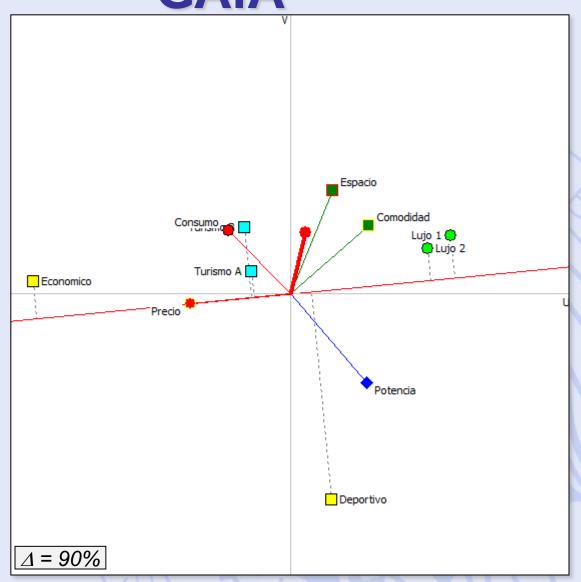
- Représentation graphique.
- 5 dimensions!

- 1. Calcul des flux nets unicritères (normalisation)
- 2. Projection sur un plan:


- Mettre en évidence les conflits entre critères.
- Identifier les compromis possibles.
- Aider à fixer les priorités.

points

Critères : axes



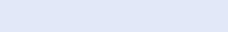
• Economico: 15 k€

• *Turismo:* 25,5-26 k€

• Deportivo: 29 k€

• Lujo: 35-38 k€

Puissance


• Deportivo: 110 kW

• Lujo: 85-90 kW

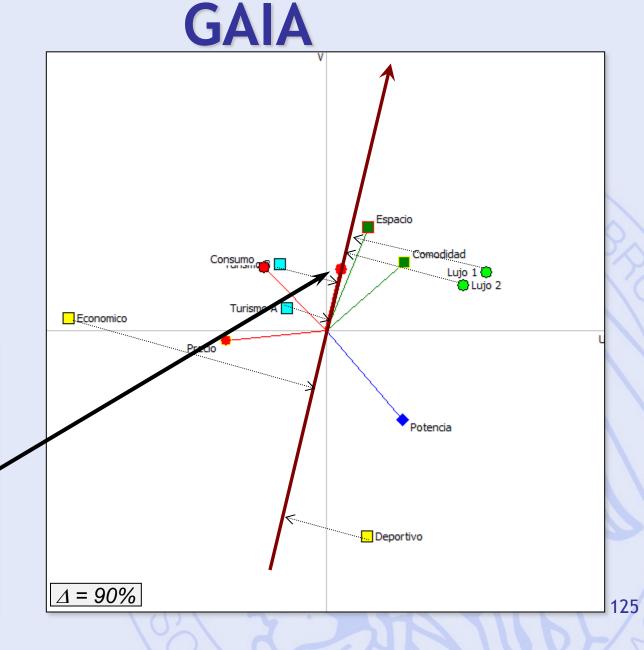
• Turismo: 75-85 kW

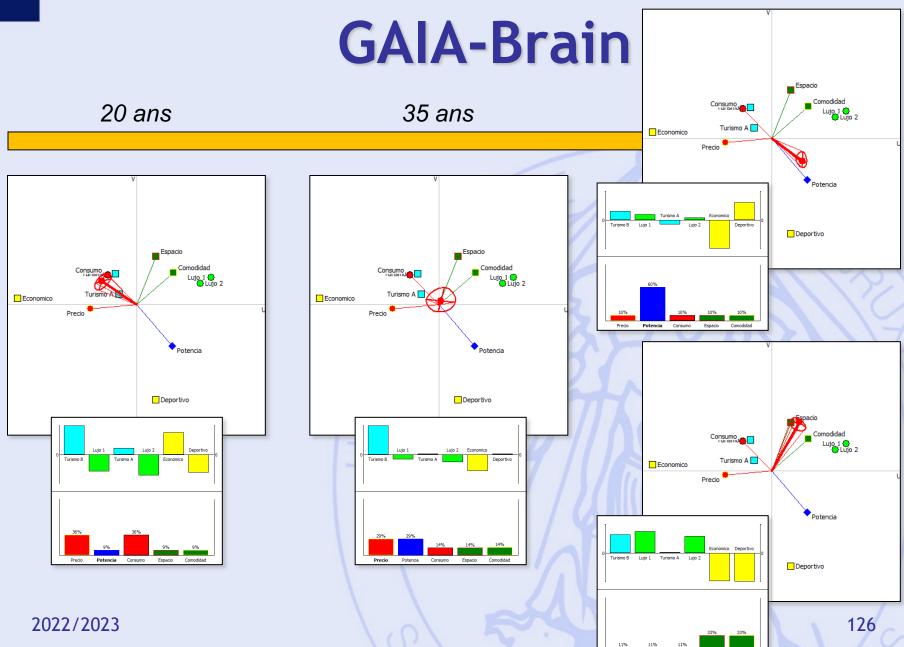
• Economico: 50 kW

GAIA Espacio Comodidad Consumo Lujo 1 💮 Turismo A Economico Precio Potencia Deportivo 1 = 90%

PROMETHEE II!

• Turismo B : 0,26

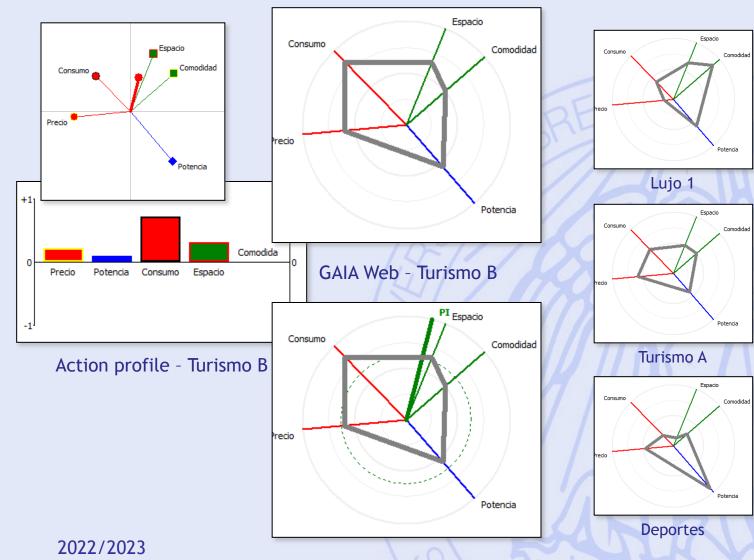

• Lujo 1 : 0,06


• *Turismo A* : 0,02

• Lujo 2 : 0,00

• *Economico : -0,15*

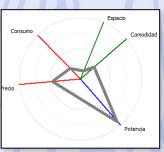
• Deportivo : -0,17

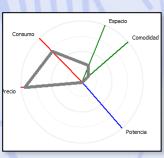


- Actions : points
- Critères : axes
- Axe de décision

GAIA Comodidad Lujo 1 💮 Lujo 2 Turismo A Economico Precio Potencia Deportivo !! △ % d'information seulement !!

GAIA Webs





Turismo B

Economico 128

Méthodes PROMETHEE & GAIA


- PROMETHEE: approache prescriptive
 - Classement partiel des actions
 - PROMETHEE I
 - Classement complet des actions
 - PROMETHEE II
- GAIA: approche descriptive
 - Identification des conflits entre critères.
 - Profils caractéristiques des actions.
 - Fixer les priorités, analyse de sensibilité.

Exemple 2: Localisation d'une usine

- Actions: 5 sites potentiels
- Critères :
 - f₁: Coût (investissement)
 - f₂: Coût (opérations)
 - f₃: Emploi
 - f₄: Transport
 - f₅: Impact sur l'environnement
 - f₆: Impact social

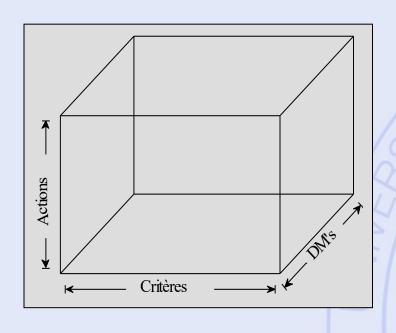
Tableau d'Evaluation

- · Critères à minimiser ou maximiser.
- Echelles différentes.
- Critères quantitatifs ou qualitatifs.

Problèmes de Décision Mono- et Multidécideur

• Monodécideur :

- Une seule partie prenante dans le processus.
- Evaluations et structure de préférence uniques.

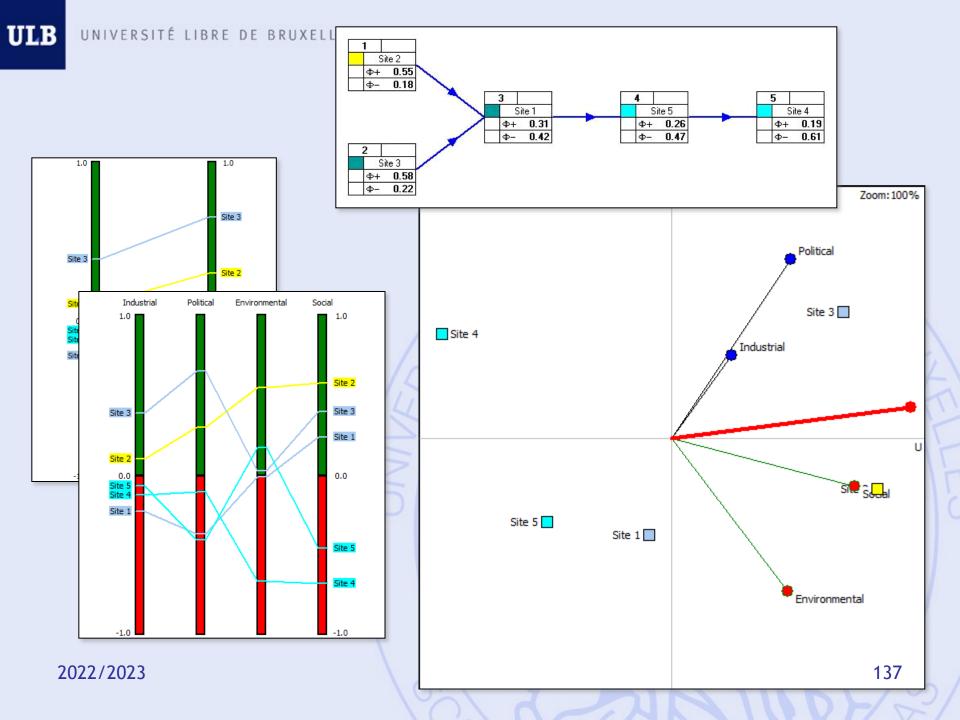

Multidécideur :

- Plusieurs parties prenantes.
- Evaluations et structures de préférences multiples.
- Recherche d'un consensus.

Exemple

- Quatre parties prenantes ("décideurs") :
 - Industriel,
 - Pouvoirs publics (région),
 - Associations de protection de l'environnement,
 - Syndicats.
- Quatre tableaux multicritères.

Matrice Multicritère


- Adapter les méthodes multicritères à la dimension multidécideur.
- Etudier les conflits entre décideurs.
- Aider à atteindre une solution de consensus.

Modèle Multi-scénarios

- Scénarios :
 - Points de vue,
 - Hypothèses de travail, ...
- Evaluations:
 - Critères 'objectifs' : évaluations communes.
 - Critères 'subjectifs' : évaluations particulières à chaque scénario.
- Structures de préférences différentes :
 - Poids, seuils de préférence.

Modèle Multi-scénarios

- Adaptation de PROMETHEE :
 - Classements individuels
 - Classements globaux (groupe) en tenant compte d'une pondération éventuelle des scénarios
- Adaptation de GAIA :
 - GAIA-Critères
 - GAIA-Scénarios
 - GAIA-Unicritère

VISUAL PROMETHEE

WWW.PROMETHEE-GAIA.NET

- 3-level simple hierarchical criteria structure.
- New visual tools:
 - PROMETHEE rankings and Diamond,
 - Visual Weight Stability Intervals,
 - Decision-maker's Brain (PROMETHEE VI),
 - GAIA-3D,
 - GAIA-Webs and PROMap GIS integration,
 - Performance (input-output) analysis, ...

PROMap

Intégration avec Google Maps :

Travail personnel

- Elaborer un problème de décision : min. 8 actions, 5 critères et 2 scénarios.
- Modéliser le problème avec PROMETHEE.
- Analyser le problème avec Visual PROMETHEE:
 - Classements PROMETHEE.
 - Analyse GAIA.
 - Analyse de sensibilité:
 - Poids des critères.
 - Différents scénarios.
 - Bonus: catégories, groupes, clusters, ...

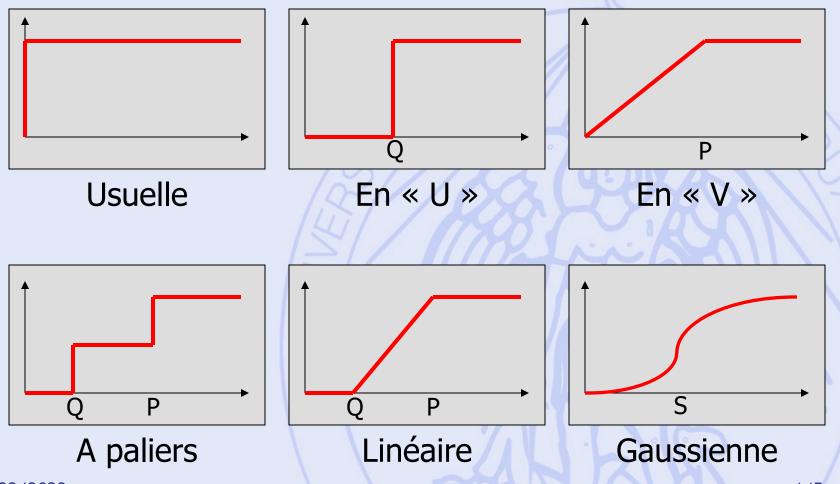
Etapes

- 1. Définir le problème :
 - Vérifier la faisabilité.
- 2. Définir les actions, critères et scénarios :
 - Echelles.
- 3. Modélisation des préférences :
 - Fonctions de préférences.
 - Pondération des critères.
- 4. Analyse critique:
 - Classements PROMETHEE.
 - GAIA.
 - Analyse de sensibilité (poids).
 - Analyse multi-scénarios.
 - Bonus (utilisation d'outils additionnels).
 - Conclusion.

Bonus

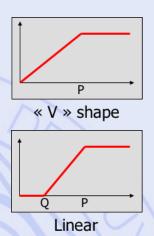
- Définition de catégories d'actions, de groupes et de clusters de critères.
- Utilisation d'outils supplémentaires :
 - Arc-en-ciel PROMETHEE,
 - Profils, GAIA-Webs,
 - Intervalles de stabilité,
 - PROMETHEE V,
 - GIS,
 - -

Pour utiliser PROMETHEE

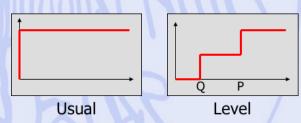

- 1. Définir les actions :
 - Liste.
- 2. Définir les critères :
 - Quantitatifs,
 - Qualitatifs (choix de l'échelle).
- 3. Evaluer (tableau).
- 4. Pour chaque critère :
 - Choisir un type de fonction de préférence.
 - Fixer les seuils correspondants.
- 5. Pondérer les critères.

Critères qualitatifs & quantitatifs

- Critères quantitatifs :
 - Echelle numérique naturelle.
- Critères qualitatifs :
 - Echelle qualitative ordinale (ex: échelles de Likert).
 - Maximum 9 niveaux (7 ± 2) pour assurer une évaluation cohérente.
 - Présence d'un niveau neutre?
 - Exemples:
 - Très bon, Bon, Moyen, Mauvais, Très mauvais
 - Oui, Non
 - ++, +, 0, -, --
 - ++, +, -, --
 - Echelle numérique sous-jacente (codage).



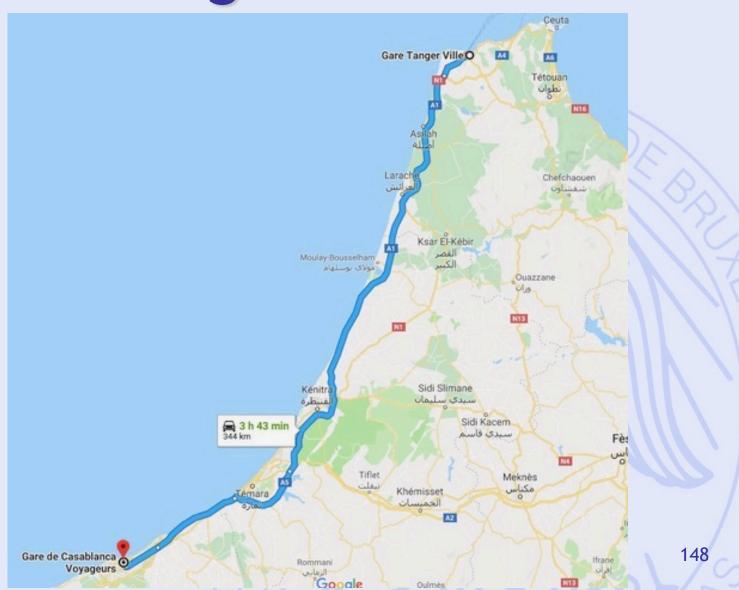
Fonctions de préférence (disponibles dans Visual PROMETHEE)



Fonctions de préférence

- Critères quantitatifs « continus » (ex. coût, prix, distance):
 - En « V » (pas de seuil d'indifférence),
 - Linéaire.

- Critères qualitatifs ou quantitatifs
 « discrets » (ex. « très bon à très mauvais », nombre d'hôpitaux):
 - Usuelle (pas de seuils),
 - A paliers.


Un exemple... Pas à pas...

Construction

de la

LGV Tanger - Casablanca

LGV Tanger - Casablanca

LGV Tanger - Casa

https://www.oncf.ma/fr/Developpement/Grands-projets/Ligne-a-grande-vitesse-tanger-casablanca

- 22,9 milliards DH → impacts économiques.
- 344 km 3h43 en auto → gain de temps.
- 12 viaducs, 2100 ha reboisés, réduction émissions GES
 - → impacts environnementaux.
- 1800 ha de terrain, 250 ménages expropriés, emplois créés, moins de victimes sur les routes → impacts sociaux.
- Choix du tracé?

Les données (fictives - cas d'étude)

- Six tracés possibles : A, B, C, D, E et F
- Six critères :
 - Coût (en milliards de DH)
 - Vitesse commerciale (en km/h)
 - Nombre d'ouvrages d'art (viaducs, ...)
 - Nombre de ménages expropriés
 - Nombre d'emplois créés
 - Impact environnemental (qualitatif 5 pts)
- Deux scénarios :
 - Gouvernement
 - ONCF (chemins de fer marocains)

Les actions

- Six tracés possibles :
 - A, B, C, D, E, F
- Deux catégories en fonction de l'orientation du tracé :
 - Ouest:
 - A, B, D
 - Est:
 - C, E, F

Les critères

- Coût
 - Quantitatif monétaire (milliards de DH)
- Vitesse commerciale
 - Quantitatif (km/h)
- Ouvrages d'art
 - Quantitatif discret (nombre de 9 à 14)
- Expropriations
 - Quantitatif (nombre de ménages)
- Emplois créés
 - Quantitatif (nombre d'emplois)
- Impact environnemental
 - Qualitatif (5 pts de très faible à très élevé)

Plan du cours

- 1. Introduction
 - Contenu du cours
- 2. Logique mathématique
 - Calcul propositionnel
 - Calcul des prédicats
 - Logique floue et aide à la décision
- 3. Récurrence et induction
- 4. Analyse d'algorithmes
 - Comparaison asymptotique de fonctions
 - Complexité
- 5. Mathématique de la gestion
 - Théorie des graphes
 - Optimisation

Récurrence

 Propositions construites à partir d'un prédicat de poids 1 et du quantificateur universel :

$$\forall n : P(n)$$

• Exemple:

$$\forall n \ge 0: \ 0+1+2+\ldots+n=\frac{n(n+1)}{2}$$

• Démonstration par récurrence.

Principe d'induction faible

- Soit P(n) un prédicat de poids 1 dont l'univers est N.
- Si P(0) est vraie et si

$$\forall n: (P(n) \rightarrow P(n+1))$$

est vraie, alors

$$\forall n : P(n)$$

Principe d'induction faible

• Exemple:

- P(0) est vraie (évident).
- Supposons P(n) vraie: $0+1+2+\ldots+n=\frac{n(n+1)}{2}$ alors:

$$0+1+2+...+n+(n+1) = \frac{n(n+1)}{2}+(n+1)$$
$$= \frac{(n+1)(n+2)}{2}$$

Principe d'induction faible

- Variante : Soient P(n) un prédicat de poids 1 dont l'univers est N et d un nombre naturel.
- Si P(d) est vraie et si

$$\forall n \ge d : (P(n) \rightarrow P(n+1))$$

est vraie, alors

$$\forall n \geq d : P(n)$$

Principe d'induction forte

- Soit P(n) un prédicat de poids 1 dont l'univers est N.
- Si P(0) est vraie et si

$$\forall n : ((P(0) \land P(1) \land \dots \land P(n)) \rightarrow P(n+1))$$

est vraie, alors

$$\forall n : P(n)$$

Principe d'induction forte

- Variante : Soient P(n) un prédicat de poids 1 dont l'univers est N et d un nombre naturel.
- Si P(d) est vraie et si

$$\forall n \geq d : ((P(d) \land ... \land P(n)) \rightarrow P(n+1))$$

est vraie, alors

$$\forall n \geq d : P(n)$$

Principes d'induction

- Les deux principes d'induction sont équivalents.
- Le principe d'induction forte peut se généraliser à d'autres ensembles que N.
- Le principe d'induction forte est parfois plus facile à utiliser dans les démonstrations.

2022/2023

160

Exemple

• Montrer que :

est vrai pour n>2